This vignette walks through the process for using duawranglr. It assumes that the data administrator and researcher have executed a data usage agreement (DUA) with three potential levels of data restrictions and created a crosswalk spreadsheet in Excel.
The raw administrative data file that needs to be processed looks like this:
sid | sname | dob | gender | raceeth | tid | tname | zip | mathscr | readscr |
---|---|---|---|---|---|---|---|---|---|
000-00-0001 | Schaefer | 19900114 | 0 | 2 | 1 | Smith | 22906 | 515 | 496 |
000-00-0002 | Hodges | 19900225 | 0 | 1 | 1 | Smith | 22906 | 488 | 489 |
000-00-0003 | Kirby | 19900305 | 0 | 4 | 1 | Smith | 22906 | 522 | 498 |
000-00-0004 | Estrada | 19900419 | 0 | 3 | 1 | Smith | 22906 | 516 | 524 |
000-00-0005 | Nielsen | 19900530 | 1 | 2 | 1 | Smith | 22906 | 483 | 509 |
000-00-0006 | Dean | 19900621 | 1 | 1 | 2 | Brown | 22906 | 503 | 523 |
000-00-0007 | Hickman | 19900712 | 1 | 1 | 2 | Brown | 22906 | 539 | 509 |
000-00-0008 | Bryant | 19900826 | 0 | 2 | 2 | Brown | 22906 | 499 | 490 |
000-00-0009 | Lynch | 19900902 | 1 | 3 | 2 | Brown | 22906 | 499 | 493 |
And we have a codebook:
sid
: Student social security numbersname
: Student’s last namedob
: Student’s date of birthgender
: Indicator for student gender identificationraceeth
: Factor variable indicatings student’s racial/ethnic identificationtid
: ID variable for student’s teachertname
: Last name of student’s teacherzip
: Student’s home address zip codemathscr
: Student’s end-of-year test math scorereadscr
: Student’s end-of-year test reading scoreThe admin_data.csv
file contains observations for 9 students and has 10 variables associated with each observation. Of these, 1 uniquely identifies each student, 6 are associated with the student’s personal characteristics, 2 with each student’s teacher, and 2 with the student’s test scores in reading and math.
It appears that the school uses the student’s social security number to uniquely identify each student. As researchers interested in test scores, we have no need for this highly protected data element other than for its ability to uniquely identify a student or allow linking to other records. Since we do not need to link to other records at the moment, any unique number or string will work for our purposes. Similarly, we don’t really need the student’s last name.
Besides math (mathscr
) and reading (readscr
) scores, we may be interested in some of the other covariates. It’s likely that many of these data elements, however, also carry restrictions of varying severity. For example, the school may be able to share the student’s race/ethnicity and gender (provided the student is not otherwise identified) with most approved researchers, but can only share teachers’ names (tid
) under more tightly restricted scenarios.
This is where our DUA crosswalk file comes in handy.
The first step in the process is to set the DUA crosswalk file. The crosswalk file can be in many different formats and, in most cases, will be read in automatically no matter the type. (If using a delimited file that isn’t a comma- or tab-separated value format, give the delimiter
argument the delimiter string; if using an Excel file with more than one sheet, give the sheet
argument the sheet name or number.) If successful, you will get message telling you so.
library(tidyverse)
library(duawranglr)
## get crosswalk and admin data files
dua_cw_file <- system.file('extdata', 'dua_cw.csv', package = 'duawranglr')
admin_file <- system.file('extdata', 'admin_data.csv', package = 'duawranglr')
## set the DUA crosswalk
set_dua_cw(dua_cw_file)
-- duawranglr note -----------------------------------------------------------------------
DUA crosswalk has been set!
In case you’ve forgotten the data elements that are restricted at a particular level, you can check them using the see_dua_options()
function with the level
argument set to the appropriate level. If you want to compare restrictions across more than one level, you can give the level
argument a vector.
## compare level II and III restrictions
see_dua_options(level = c('level_ii', 'level_iii'))
------------------------------------------------------------------------------------------
LEVEL NAME: level_ii
------------------------------------------------------------------------------------------
RESTRICTED VARIABLE NAMES:
- dob
- sid
- sname
- tname
- zip
------------------------------------------------------------------------------------------
LEVEL NAME: level_iii
------------------------------------------------------------------------------------------
RESTRICTED VARIABLE NAMES:
- sid
- sname
- tname
------------------------------------------------------------------------------------------
Alternately, you can see restrictions at all levels if you leave the level
argument at its default NULL
value.
## check all level restrictions
see_dua_options()
------------------------------------------------------------------------------------------
LEVEL NAME: level_i
------------------------------------------------------------------------------------------
RESTRICTED VARIABLE NAMES:
- dob
- gender
- raceeth
- sid
- sname
- tid
- tname
- zip
------------------------------------------------------------------------------------------
LEVEL NAME: level_ii
------------------------------------------------------------------------------------------
RESTRICTED VARIABLE NAMES:
- dob
- sid
- sname
- tname
- zip
------------------------------------------------------------------------------------------
LEVEL NAME: level_iii
------------------------------------------------------------------------------------------
RESTRICTED VARIABLE NAMES:
- sid
- sname
- tname
------------------------------------------------------------------------------------------
After consultation with our data partner, we’ve decided that data for this project need to be set at Level II. Because no level allows us to use the current unique ID, sid
, we also need to deidentify the data. We could just delete the sid
column, but for reasons discussed below, it will be better if we use it to make new, non-identifiable but unique IDs. Therefore, we use additional arguments in set_dua_level()
to note that deidentification is required and set the targeted ID column.
As we’re preparing the data, we can check our restriction level and the data element names it restricts using see_dua_level()
.
## see set DUA level
see_dua_level(show_restrictions = TRUE)
------------------------------------------------------------------------------------------
You have set restrictions at [ level_ii ]
------------------------------------------------------------------------------------------
RESTRICTED VARIABLE NAMES:
- dob
- sid
- sname
- tname
- zip
------------------------------------------------------------------------------------------
After loading some libraries, we’ll first read in the raw administrative data file and confirm that it has nine observations and the data elements we expect.
## read in raw administrative data
df <- read_dua_file(admin_file)
df
# A tibble: 9 x 10
sid sname dob gender raceeth tid tname zip mathscr readscr
<chr> <chr> <chr> <int> <int> <int> <chr> <int> <int> <int>
1 000-00-0001 Schaefer 19900114 0 2 1 Smith 22906 515 496
2 000-00-0002 Hodges 19900225 0 1 1 Smith 22906 488 489
3 000-00-0003 Kirby 19900305 0 4 1 Smith 22906 522 498
4 000-00-0004 Estrada 19900419 0 3 1 Smith 22906 516 524
5 000-00-0005 Nielsen 19900530 1 2 1 Smith 22906 483 509
6 000-00-0006 Dean 19900621 1 1 2 Brown 22906 503 523
7 000-00-0007 Hickman 19900712 1 1 2 Brown 22906 539 509
8 000-00-0008 Bryant 19900826 0 2 2 Brown 22906 499 490
9 000-00-0009 Lynch 19900902 1 3 2 Brown 22906 499 493
We indicated that the data need to be deidentified, so a good first step in cleaning the raw data is to convert unique student id, sid
, into a similarly unique, but unidentifiable value.
Why not just generate some random string for each value? Though we don’t care to merge these data with other files, we may need to do so in the future. If we randomly generate new IDs, discarding the old ones in the process, we will be stuck.
The deid_dua()
function does two things:
SHA-2
algorithm to convert sensitive IDs into unique hexadecimal strings that cannot be reverted back to the originial IDs (important in the case such as ours when the unique ID is the student’s social security number);Clearly, it defeats the purpose of deidentifying IDs if a crosswalk between old and new travels with the new data. But if the crosswalk file is keep in a secure location, perhaps on the same server that hosts the raw administrative data, then old IDs can be retrieved if necessary by those with the proper clearance to do so.
## deidentify data
df <- deid_dua(df, write_crosswalk = TRUE, id_length = 20)
Here’s what the saved crosswalk looks like:
# A tibble: 9 x 2
sid id
<chr> <chr>
1 000-00-0001 ebcdf3c3bc91222703d9
2 000-00-0002 61bc06b5a8a16e3d8476
3 000-00-0003 84ade21a530a26f22386
4 000-00-0004 d4e791f6574206c51f56
5 000-00-0005 9a5334733f4e3ffb3d02
6 000-00-0006 df20dd03819b5739316f
7 000-00-0007 191f8d3f0875469f5ab1
8 000-00-0008 433a7b474308cbd61ce9
9 000-00-0009 fce1d3e7d41172de3fc4
And here now is the data frame:
## show data frame
df
# A tibble: 9 x 10
id sname dob gender raceeth tid tname zip mathscr readscr
<chr> <chr> <chr> <int> <int> <int> <chr> <int> <int> <int>
1 ebcdf3c3bc91222703d9 Schaefer 19900114 0 2 1 Smith 22906 515 496
2 61bc06b5a8a16e3d8476 Hodges 19900225 0 1 1 Smith 22906 488 489
3 84ade21a530a26f22386 Kirby 19900305 0 4 1 Smith 22906 522 498
4 d4e791f6574206c51f56 Estrada 19900419 0 3 1 Smith 22906 516 524
5 9a5334733f4e3ffb3d02 Nielsen 19900530 1 2 1 Smith 22906 483 509
6 df20dd03819b5739316f Dean 19900621 1 1 2 Brown 22906 503 523
7 191f8d3f0875469f5ab1 Hickman 19900712 1 1 2 Brown 22906 539 509
8 433a7b474308cbd61ce9 Bryant 19900826 0 2 2 Brown 22906 499 490
9 fce1d3e7d41172de3fc4 Lynch 19900902 1 3 2 Brown 22906 499 493
If the deidentified data frame is built from multiple files (e.g., a panel data set of observations across years), then we’ll want to reuse an existing crosswalk. Otherwise, the same original ID will end up with multiple new IDs and we won’t be able to link observations across data sets.
Let’s say we already have master crosswalk file that looks like this:
# A tibble: 9 x 2
sid id
<chr> <chr>
1 000-00-0001 db3681caa7e4789c9a99
2 000-00-0002 8e13af4fbb998c26348f
3 000-00-0003 2c7f2f98f9ee0e3b69ba
4 000-00-0004 ed7041ab2076a84fe611
5 000-00-0005 d4180e00af840a7a8e29
6 000-00-0006 9d42b365e2e49989b620
7 000-00-0007 a997bd9ffc4ee8030081
8 000-00-0008 43fc27899df21721b0c5
9 000-00-0009 e3150a7010e9a08d52f0
Rather than create new IDs, we can use the existing_crosswalk
argument to read in and use the new IDs we’ve already made. Everything else works the same as before.
df <- deid_dua(df, existing_crosswalk = 'master_crosswalk.csv')
The new ID values now match those from the crosswalk.
df
# A tibble: 9 x 10
id sname dob gender raceeth tid tname zip mathscr readscr
<chr> <chr> <chr> <int> <int> <int> <chr> <int> <int> <int>
1 db3681caa7e4789c9a99 Schaefer 19900114 0 2 1 Smith 22906 515 496
2 8e13af4fbb998c26348f Hodges 19900225 0 1 1 Smith 22906 488 489
3 2c7f2f98f9ee0e3b69ba Kirby 19900305 0 4 1 Smith 22906 522 498
4 ed7041ab2076a84fe611 Estrada 19900419 0 3 1 Smith 22906 516 524
5 d4180e00af840a7a8e29 Nielsen 19900530 1 2 1 Smith 22906 483 509
6 9d42b365e2e49989b620 Dean 19900621 1 1 2 Brown 22906 503 523
7 a997bd9ffc4ee8030081 Hickman 19900712 1 1 2 Brown 22906 539 509
8 43fc27899df21721b0c5 Bryant 19900826 0 2 2 Brown 22906 499 490
9 e3150a7010e9a08d52f0 Lynch 19900902 1 3 2 Brown 22906 499 493
In our example, we have nine students in the current file. Let’s say that though we have a crosswalk, it only has new IDs for the first five observations:
# A tibble: 5 x 2
sid id
<chr> <chr>
1 000-00-0001 db3681caa7e4789c9a99
2 000-00-0002 8e13af4fbb998c26348f
3 000-00-0003 2c7f2f98f9ee0e3b69ba
4 000-00-0004 ed7041ab2076a84fe611
5 000-00-0005 d4180e00af840a7a8e29
If the existing crosswalk doesn’t have values for all observations, then deid_dua()
will:
The command is the same for a partial crosswalk as for a complete crosswalk.
df <- deid_dua(df, existing_crosswalk = 'crosswalk_partial.csv')
Notice that the new IDs for the first five observations match those that were already in the existing crosswalk. The last four are new.
df
# A tibble: 9 x 10
id sname dob gender raceeth tid tname zip mathscr readscr
<chr> <chr> <chr> <int> <int> <int> <chr> <int> <int> <int>
1 db3681caa7e4789c9a99 Schaefer 19900114 0 2 1 Smith 22906 515 496
2 8e13af4fbb998c26348f Hodges 19900225 0 1 1 Smith 22906 488 489
3 2c7f2f98f9ee0e3b69ba Kirby 19900305 0 4 1 Smith 22906 522 498
4 ed7041ab2076a84fe611 Estrada 19900419 0 3 1 Smith 22906 516 524
5 d4180e00af840a7a8e29 Nielsen 19900530 1 2 1 Smith 22906 483 509
6 fe91d6d0be5169024a05 Dean 19900621 1 1 2 Brown 22906 503 523
7 4bff2ff587a714acdbd1 Hickman 19900712 1 1 2 Brown 22906 539 509
8 c123fadca37c5c418b43 Bryant 19900826 0 2 2 Brown 22906 499 490
9 41d53a507f6cca1af1d2 Lynch 19900902 1 3 2 Brown 22906 499 493
Looking at the partial crosswalk, we see that it now has four new rows with new IDs each for the observations it didn’t have before.
# A tibble: 9 x 2
sid id
<chr> <chr>
1 000-00-0001 db3681caa7e4789c9a99
2 000-00-0002 8e13af4fbb998c26348f
3 000-00-0003 2c7f2f98f9ee0e3b69ba
4 000-00-0004 ed7041ab2076a84fe611
5 000-00-0005 d4180e00af840a7a8e29
6 000-00-0006 fe91d6d0be5169024a05
7 000-00-0007 4bff2ff587a714acdbd1
8 000-00-0008 c123fadca37c5c418b43
9 000-00-0009 41d53a507f6cca1af1d2
Should we encounter those students in future files, deid_dua()
will use the new IDs we just created.
If we try to write the data frame using the write_dua_df()
function, we get an error.
## write data to disk with one last check
write_dua_df(df, 'cleaned_data.csv', output_type = 'csv')
-- duawranglr note -----------------------------------------------------------------------
Data set has not yet passed check. Run -check_dua_restrictions()- to check status.
Right, we haven’t removed all the restricted data elements. Following the directions, we can check to see what still needs to be removed using the check_dua_restrictions()
function.
## check
check_dua_restrictions(df)
-- duawranglr note -----------------------------------------------------------------------
The following variables are not allowed at the current data usage level restriction [
level_ii ] and MUST BE REMOVED before saving:
- sname
- dob
- tname
- zip
We’ve successfully removed sid
already (when we deidentified the data frame), but still have to remove the student’s last name, date of birth, teacher’s name, and zip code to meet level II restrictions. Once we remove those columns, we can check again.
## remove restricted columns
df <- df %>% select(-c(sname, dob, tname, zip))
## check again
check_dua_restrictions(df)
-- duawranglr note -----------------------------------------------------------------------
Data set has passed check and may be saved.
Success! And to be sure, here’s what our data frame looks like now:
df
# A tibble: 9 x 6
id gender raceeth tid mathscr readscr
<chr> <int> <int> <int> <int> <int>
1 db3681caa7e4789c9a99 0 2 1 515 496
2 8e13af4fbb998c26348f 0 1 1 488 489
3 2c7f2f98f9ee0e3b69ba 0 4 1 522 498
4 ed7041ab2076a84fe611 0 3 1 516 524
5 d4180e00af840a7a8e29 1 2 1 483 509
6 fe91d6d0be5169024a05 1 1 2 503 523
7 4bff2ff587a714acdbd1 1 1 2 539 509
8 c123fadca37c5c418b43 0 2 2 499 490
9 41d53a507f6cca1af1d2 1 3 2 499 493
Now that we’ve passed our check, we can write the level II secure data frame to disk. Just like the set_dua_cw()
function, which automates reading in many types of files, write_dua_df()
will write many types of files. See ?write_dua_df
for options.
## write data to disk
write_dua_df(df, 'cleaned_data_lev_ii.csv', output_type = 'csv')
Particularly for the first few times you use this package, you may need help remembering the steps. To help the process, the interactive make_dua_template()
function will help you make a template script that you can then modify to meet your data cleaning needs. When called, the function will ask you a few yes or no questions and, based on your answers, build a template script that pre-fills some function arguments.
An example template script is printed below.
## save template to disk
make_dua_template('clean_data.R')
################################################################################
##
## [ Proj ] < general project name >
## [ File ] clean_data.R
## [ Auth ] < author name >
## [ Init ] 13 June 2021
##
################################################################################
## ---------------------------
## libraries
## ---------------------------
## NOTES: Include additional libraries using either -library()- or -require()-
## functions here.
## ---------------------------
## set DUA crosswalk
## ---------------------------
## NOTES: Choose the DUA agreement crosswalk file if you didn't when setting up
## the template. If the file is a delimited file that isn't a CSV or TSV, be
## sure to indicate the delimiter string with the -delimiter- argument.
## Similarly if the crosswalk is in an Excel file on any sheet beyond the
## first, set the -sheet- argument to the correct sheet.
set_dua(dua = '< dua crosswalk file name >')
## ---------------------------
## set DUA level
## ---------------------------
## NOTES: Choose the DUA agreement crosswalk level. If you indicated that the
## data should be deidentified, those options, including the ID column if
## choosen, are included below. If you did not indicate the name of the ID
## column to be deidentified, add its name after the -id_column- argument.
##
## If you did not indicate that the data should be deidentified, but they
## should be, see ?deid_dua().
set_dua_level(level = '< level name >')
## ---------------------------
## data cleaning
## ---------------------------
## NOTES: Use standard scripts to build and clean data set here.
## ---------------------------
## check DUA restrictions
## ---------------------------
## NOTES: If your data frame includes restricted data elements or should have
## been deidentified and has not been, -check_dua_restrictions()- will return
## an error and stop. Fix above and rerun or set -remove_protected- arguement
## to TRUE to automatically remove restricted columns.
check_dua_restrictions(df = '< data frame >')
## ---------------------------
## write cleaned file
## ---------------------------
## NOTES: Write cleaned file to disk. Select the file type (e.g., CSV, TSV,
## Stata, Rdata) and include additional arguments required by -haven- or base R
## writing functions.
write_dua_df(df = '< data frame >', output_type = '< output file type >'
## -----------------------------------------------------------------------------
## end script
################################################################################