This function is used to search the College Scorecard data dictionary.
Usage
sc_dict(
search_string,
search_col = c("all", "description", "varname", "dev_friendly_name", "dev_category",
"label", "source"),
ignore_case = TRUE,
limit = 10,
confirm = FALSE,
print_dev = FALSE,
print_notes = FALSE,
return_df = FALSE,
print_off = FALSE,
can_filter = FALSE,
filter_vars = FALSE
)
Arguments
- search_string
Character string for search. Can use regular expression for search. Must escape special characters,
. \ | ( ) [ { ^ $ * + ?
, with a doublebackslash\\
.- search_col
Column to search. The default is to search all columns. Other options include: "varname", "dev_friendly_name", "dev_category", "label".
- ignore_case
Search is case insensitive by default. Change to
FALSE
to restrict search to exact case matches.- limit
Only the first 10 dictionary items are returned by default. Increase to return more values. Set to
Inf
to return all items matched in search'- confirm
Use to confirm status of variable name in dictionary. Returns
TRUE
orFALSE
.- print_dev
Set to
TRUE
if you want to see the developer friendly name and category used in the API call.- print_notes
Set to
TRUE
if you want to see the notes included in the data dictionary (if any).- return_df
Return a tibble of the subset data dictionary.
- print_off
Do not print to console; useful if you only want to return a tibble of dictionary values.
- can_filter
Use to confirm that a variable can be used as a filtering variable. Returns
TRUE
orFALSE
- filter_vars
Use to print variables that can be used to filter calls. Use with argument
return_df = TRUE
to return a tibble of these variables in addition to console output.
Examples
## simple search for 'state' in any part of the dictionary
sc_dict('state')
#>
#> ---------------------------------------------------------------------
#> varname: stabbr source: IPEDS
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> State postcode
#>
#> VALUES: NA
#>
#> CAN FILTER? Yes
#>
#>
#> ---------------------------------------------------------------------
#> varname: st_fips source: IPEDS
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> FIPS code for state
#>
#> VALUES:
#>
#> 1 = Alabama
#> 2 = Alaska
#> 4 = Arizona
#> 5 = Arkansas
#> 6 = California
#> 8 = Colorado
#> 9 = Connecticut
#> 10 = Delaware
#> 11 = District of Columbia
#> 12 = Florida
#> 13 = Georgia
#> 15 = Hawaii
#> 16 = Idaho
#> 17 = Illinois
#> 18 = Indiana
#> 19 = Iowa
#> 20 = Kansas
#> 21 = Kentucky
#> 22 = Louisiana
#> 23 = Maine
#> 24 = Maryland
#> 25 = Massachusetts
#> 26 = Michigan
#> 27 = Minnesota
#> 28 = Mississippi
#> 29 = Missouri
#> 30 = Montana
#> 31 = Nebraska
#> 32 = Nevada
#> 33 = New Hampshire
#> 34 = New Jersey
#> 35 = New Mexico
#> 36 = New York
#> 37 = North Carolina
#> 38 = North Dakota
#> 39 = Ohio
#> 40 = Oklahoma
#> 41 = Oregon
#> 42 = Pennsylvania
#> 44 = Rhode Island
#> 45 = South Carolina
#> 46 = South Dakota
#> 47 = Tennessee
#> 48 = Texas
#> 49 = Utah
#> 50 = Vermont
#> 51 = Virginia
#> 53 = Washington
#> 54 = West Virginia
#> 55 = Wisconsin
#> 56 = Wyoming
#> 60 = American Samoa
#> 64 = Federated States of Micronesia
#> 66 = Guam
#> 69 = Northern Mariana Islands
#> 70 = Palau
#> 72 = Puerto Rico
#> 78 = Virgin Islands
#>
#> CAN FILTER? Yes
#>
#>
#> ---------------------------------------------------------------------
#> varname: tuitionfee_in source: IPEDS
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> In-state tuition and fees
#>
#> VALUES: NA
#>
#> CAN FILTER? Yes
#>
#>
#> ---------------------------------------------------------------------
#> varname: tuitionfee_out source: IPEDS
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> Out-of-state tuition and fees
#>
#> VALUES: NA
#>
#> CAN FILTER? Yes
#>
#>
#> ---------------------------------------------------------------------
#> varname: earn_in_state_1yr source: Treasury
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> Number of graduates working and not enrolled 1 year after completing
#> who were employed within the same state as the institution
#>
#> VALUES: NA
#>
#> CAN FILTER? No
#>
#>
#> ---------------------------------------------------------------------
#> varname: earn_in_state_4yr source: Treasury
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> Number of graduates working and not enrolled 4 years after completing
#> who were employed within the same state as the institution
#>
#> VALUES: NA
#>
#> CAN FILTER? No
#>
#>
#> ---------------------------------------------------------------------
#> varname: earn_in_state_5yr source: Treasury
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> Number of graduates working and not enrolled 5 years after completing
#> who were employed within the same state as the institution
#>
#> VALUES: NA
#>
#> CAN FILTER? No
#>
#> ---------------------------------------------------------------------
#> Printed information for 7 of out 7 variables.
#>
## variable names starting with 'st'
sc_dict('^st', search_col = 'varname')
#>
#> ---------------------------------------------------------------------
#> varname: stabbr source: IPEDS
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> State postcode
#>
#> VALUES: NA
#>
#> CAN FILTER? Yes
#>
#>
#> ---------------------------------------------------------------------
#> varname: st_fips source: IPEDS
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> FIPS code for state
#>
#> VALUES:
#>
#> 1 = Alabama
#> 2 = Alaska
#> 4 = Arizona
#> 5 = Arkansas
#> 6 = California
#> 8 = Colorado
#> 9 = Connecticut
#> 10 = Delaware
#> 11 = District of Columbia
#> 12 = Florida
#> 13 = Georgia
#> 15 = Hawaii
#> 16 = Idaho
#> 17 = Illinois
#> 18 = Indiana
#> 19 = Iowa
#> 20 = Kansas
#> 21 = Kentucky
#> 22 = Louisiana
#> 23 = Maine
#> 24 = Maryland
#> 25 = Massachusetts
#> 26 = Michigan
#> 27 = Minnesota
#> 28 = Mississippi
#> 29 = Missouri
#> 30 = Montana
#> 31 = Nebraska
#> 32 = Nevada
#> 33 = New Hampshire
#> 34 = New Jersey
#> 35 = New Mexico
#> 36 = New York
#> 37 = North Carolina
#> 38 = North Dakota
#> 39 = Ohio
#> 40 = Oklahoma
#> 41 = Oregon
#> 42 = Pennsylvania
#> 44 = Rhode Island
#> 45 = South Carolina
#> 46 = South Dakota
#> 47 = Tennessee
#> 48 = Texas
#> 49 = Utah
#> 50 = Vermont
#> 51 = Virginia
#> 53 = Washington
#> 54 = West Virginia
#> 55 = Wisconsin
#> 56 = Wyoming
#> 60 = American Samoa
#> 64 = Federated States of Micronesia
#> 66 = Guam
#> 69 = Northern Mariana Islands
#> 70 = Palau
#> 72 = Puerto Rico
#> 78 = Virgin Islands
#>
#> CAN FILTER? Yes
#>
#>
#> ---------------------------------------------------------------------
#> varname: stufacr source: IPEDS
#> ---------------------------------------------------------------------
#> DESCRIPTION:
#>
#> Undergraduate student to instructional faculty ratio
#>
#> VALUES: NA
#>
#> CAN FILTER? No
#>
#> ---------------------------------------------------------------------
#> Printed information for 3 of out 3 variables.
#>
## return full dictionary (only recommended if not printing and
## storing in object)
df <- sc_dict('.', limit = Inf, print_off = TRUE, return_df = TRUE)
## print list of variables that can be used to filter
df <- sc_dict('.', filter_vars = TRUE, return_df = TRUE)
#>
#> ---------------------------------------------------------------------
#> The following variables can be used in sc_filter():
#> ---------------------------------------------------------------------
#>
#> - aanapii
#> - actcmmid
#> - adm_rate
#> - admcon7
#> - annhi
#> - c150_4_pooled
#> - ccbasic
#> - cipcode
#> - city
#> - cntover150_3yr
#> - control
#> - creddesc
#> - credlev
#> - curroper
#> - debt_all_stgp_any_mdn
#> - debt_all_stgp_any_mdn10yrpay
#> - debt_all_stgp_eval_mdn
#> - dolprovider
#> - earn_mdn_4yr
#> - earn_mdn_5yr
#> - fedschcd
#> - gt_25k_p6
#> - gt_threshold_p6_supp
#> - hbcu
#> - hcm2
#> - highdeg
#> - hsi
#> - instnm
#> - insturl
#> - ipedscount1
#> - ipedscount2
#> - locale
#> - locale2
#> - main
#> - md_earn_wne_p10
#> - mdcomp_all
#> - mdcomp_pd
#> - mdcost_all
#> - mdcost_pd
#> - mdearn_all
#> - mdearn_pd
#> - menonly
#> - mn_earn_wne_inc1_p6
#> - nanti
#> - npt41_priv
#> - npt41_pub
#> - npt42_priv
#> - npt42_pub
#> - npt43_priv
#> - npt43_pub
#> - npt44_priv
#> - npt44_pub
#> - npt45_priv
#> - npt45_pub
#> - npt4_priv
#> - npt4_pub
#> - numbranch
#> - opeid
#> - opeid6
#> - pbi
#> - preddeg
#> - region
#> - relaffil
#> - sat_avg
#> - satmt25
#> - satmt75
#> - satmtmid
#> - satvr25
#> - satvr75
#> - satvrmid
#> - satwr25
#> - satwr75
#> - satwrmid
#> - st_fips
#> - stabbr
#> - tribal
#> - tuitionfee_in
#> - tuitionfee_out
#> - ugds
#> - unitid
#> - womenonly
#> - zip
#>